Objective-C Runtime 及消息发送与转发

什么是 Runtime

Objective-C语言是一门动态语言,它将很多静态语言在编译和链接时期做的事放到了运行时来处理。之所以能具备这种特性,离不开运行时系统即objc Runtimeobjc RuntimeRuntime库。Runtime很好的解决了如何在运行时期找到调用方法这样的问题。

类与对象基础数据结构

Class

Objective-C类是由Class类型来表示的,它实际上是一个指向objc_class结构体的指针。它的定义如下:
typedef struct objc_class *Class;
我们再来看objc/runtime.hobjc_class结构体的定义如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
struct objc_class {
Class isa OBJC_ISA_AVAILABILITY;
#if !__OBJC2__
Class super_class OBJC2_UNAVAILABLE; // 父类
const char *name OBJC2_UNAVAILABLE; // 类名
long version OBJC2_UNAVAILABLE; // 类的版本信息,默认为0
long info OBJC2_UNAVAILABLE; // 类信息,供运行期使用的一些位标识
long instance_size OBJC2_UNAVAILABLE; // 该类的实例变量大小
struct objc_ivar_list *ivars OBJC2_UNAVAILABLE; // 该类的成员变量链表
struct objc_method_list **methodLists OBJC2_UNAVAILABLE; // 方法定义的链表
struct objc_cache *cache OBJC2_UNAVAILABLE; // 方法缓存
struct objc_protocol_list *protocols OBJC2_UNAVAILABLE; // 协议链表
#endif
} OBJC2_UNAVAILABLE;

其中,有几个字段是我们需要掌握的。
1.isa:需要注意的是在Objective-C中,所有的类自身也是一个对象,这个对象的Class里面也有一个isa指针,它指向metaClass(元类)。
2.super_class:指向该类的父类,如果该类已经是最顶层的根类(如NSObject或NSProxy),则super_class为NULL。
3.methodLists:看名字也容易理解,这个methodLists就是用来存放方法列表的。
4.cache:用于缓存最近使用的方法。
5.version:我们可以使用这个字段来提供类的版本信息。这对于对象的序列化非常有用,它可是让我们识别出不同类定义版本中实例变量布局的改变。

元类(Meta Class)

所有的类自身也是一个对象,我们可以向这个对象发送消息(即调用类方法)。既然是对象,那么它也是一个objc_object指针,它包含一个指向其类的一个isa指针。那么这些就有一个问题了,这个isa指针指向什么呢?这个类的isa指针必须指向一个包含这些类方法的一个objc_class结构体。这就引出了meta-class的概念:meta-class是一个类对象的类。
当我们向一个对象发送消息时,runtime会在这个对象所属的这个类的方法列表中查找方法;而向一个类发送消息时,会在这个类的meta-class的方法列表中查找。
meta-class之所以重要,是因为它存储着一个类的所有类方法。每个类都会有一个单独的meta-class,因为每个类的类方法基本不可能完全相同。
再深入一下,meta-class也是一个类,也可以向它发送一个消息,那么它的isa又是指向什么呢?为了不让这种结构无限延伸下去,Objective-C的设计者让所有的meta-classisa指向基类的meta-class,以此作为它们的所属类。即,任何NSObject继承体系下的meta-class都使用NSObjectmeta-class作为自己的所属类,而基类的meta-classisa指针是指向它自己。这样就形成了一个完美的闭环。
通过上面的描述,再加上对objc_class结构体中super_class指针的分析,我们就可以描绘出类及相应meta-class类的一个继承体系了,如下图所示:
1.png

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
MyClass *myClass = [[MyClass alloc] init];

Class class = [myClass class];
Class metaClass = object_getClass(class);
Class metaOfMetaClass = object_getClass(metaClass);
Class rootMetaClass = object_getClass(metaOfMetaClass);
Class superclass = class_getSuperclass(class);
Class superOfSuperclass = class_getSuperclass(superclass);
Class superOfMetaOfSuperclass = class_getSuperclass(object_getClass(superclass));

NSLog(@"MyClass 实例对象是:%p",myClass);
NSLog(@"MyClass 类对象是:%p",class);
NSLog(@"MyClass 元类对象是:%p",metaClass);
NSLog(@"MyClass 元类对象的元类对象是:%p",metaOfMetaClass);
NSLog(@"MyClass 根元类对象是:%p",rootMetaClass);
NSLog(@"MyClass 父类是:%@",class_getSuperclass(class));
NSLog(@"MyClass 父类的父类是:%@",superOfSuperclass);
NSLog(@"MyClass 父类的元类的父类是:%@",superOfMetaOfSuperclass);

NSLog(@"NSObject 元类对象是:%p",object_getClass([NSObject class]));
NSLog(@"NSObject 父类是:%@",[[NSObject class] superclass]);
NSLog(@"NSObject 元类对象的父类是:%@",[object_getClass([NSObject class]) superclass]);

//输出:
MyClass 实例对象是:0x60c00000b8d0
MyClass 类对象是:0x109ae3fd0
MyClass 元类对象是:****0x109ae3fa8
MyClass 元类对象的元类对象是:****0x10ab02e58**
MyClass 根元类对象是:0x10ab02e58
MyClass 父类是:NSObject
MyClass 父类的父类是:(null)
MyClass 父类的元类的父类是:NSObject
NSObject 元类对象是:0x10ab02e58
NSObject 父类是:(null)
NSObject 元类对象的父类是:NSObject

现在我们能知道各种对象之间的关系

实例对象通过 isa 指针,找到类对象 Class;类对象同样通过 isa 指针,找到元类对象;元类对象也是通过 isa 指针,找到根元类对象;最后,根元类对象的 isa 指针,指向自己。可以发现 NSObject 是整个消息机制的核心,绝大数对象都继承自它。

methodLists

我们再来看看objc_method_list这个结构体

1
2
3
4
5
6
7
8
9
10
struct objc_method_list {
struct objc_method_list * _Nullable obsolete OBJC2_UNAVAILABLE;

int method_count OBJC2_UNAVAILABLE;
#ifdef __LP64__
int space OBJC2_UNAVAILABLE;
#endif
/* variable length structure */
struct objc_method method_list[1] OBJC2_UNAVAILABLE;
}

里面的objc_method,也就是我们熟悉的Method

1
2
3
4
5
struct objc_method {
SEL _Nonnull method_name OBJC2_UNAVAILABLE; //方法的名称
char * _Nullable method_types OBJC2_UNAVAILABLE; //方法的类型
IMP _Nonnull method_imp OBJC2_UNAVAILABLE; // 方法的具体实现
}

由此我们可以得出实例对象调用方法的大致逻辑:

1
2
MyClass *myClass = [[MyClass alloc] init];
[myClass printLog];

先被编译成 ((void (*)(id, SEL))(void *) objc_msgSend)(myClass, @selector(printLog));
沿着入参myClassisa指针,找到myClass的类对象(Class),也就是 MyClass
接着在MyClass的方法列表methodLists中,找到对应的Method
最后找到 Method 中的 IMP 指针,执行具体实现

由上文,我们已经知道,实例对象是通过isa指针,找到其类对象(Class)中保存的方法列表中的具体实现的。printLog方法就是保存在MyClass中的。
那么如果是个类方法,又是保存在什么地方的呢?我们也知道了类对象的isa指针是指向元类对象的。那么不难得出:

类对象的类方法,是保存在元类对象中的!

cache

我们大概知道,方法是通过isa指针,查找Class 中的methodLists的。如果子类没实现对应的方法实现,还会沿着父类去查找。整个工程,可能有成万上亿个方法,是如何解决性能问题的呢?如果每调用一次都需要遍历methodLists,性能是非常差的。所以引入了 Class Cache 机制:Class Cache 认为,当一个方法被调用,那么它之后被调用的可能性就越大。
查找方法时,会先从缓存中查找,找到直接返回 ;找不到,再去Class的方法列表中找。
在上文中 Class 的定义中,我们可以发现 cache:
struct objc_cache * _Nonnull cache OBJC2_UNAVAILABLE;
说明了缓存是存在类中的,每个类都有一份方法缓存,而不是每个类的 object 都保存了一份。

父类(superclass)

Objective-C中,子类调用一个方法,如果没有子类没有实现,父类实现了,会去调用父类的实现。上文中,找到methodLists后,寻找 Method 的大致过程如下:
2.png

ps: 其实这里的寻找过程远没有这么简单,可能会遍历很多遍,因为我们可能会在运行时动态的添加方法(比如category)。遍历的过程中同样不时的去查询缓存表。

消息转发

如果方法列表(methodLists)没找到对应的 selector 呢?
[self performSelector:@selector(myTestPrint:) withObject:@"嘻嘻"];
系统会提供三次补救的机会。

第一次

+ (BOOL)resolveInstanceMethod:(SEL)sel {} (实例方法)
+ (BOOL)resolveClassMethod:(SEL)sel {} (类方法)

这两个方法,一个针对实例方法;一个针对类方法。返回值都是Bool

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// ViewController.m 中

void myMethod(id self, SEL _cmd,NSString *nub) {
NSLog(@"ifelseboyxx%@",nub);
}

+ (BOOL)resolveInstanceMethod:(SEL)sel {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wundeclared-selector"
if (sel == @selector(myTestPrint:)) {
#pragma clang diagnostic pop
class_addMethod([self class],sel,(IMP)myMethod,"v@:@");
return YES;
}else {
return [super resolveInstanceMethod:sel];
}
}

我们只需要在 resolveInstanceMethod: 方法中,利用 class_addMethod 方法,将未实现的myTestPrint:绑定到 myMethod上就能完成转发,最后返回YES

第二次

- (id)forwardingTargetForSelector:(SEL)aSelector {}
这个方法要求返回一个id。使用场景一般是将 A 类的某个方法,转发到 B 类的实现中去。
使用示例:
想转发到 Person 类中的-myTestPrint:方法中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@interface Person : NSObject
@end

@implementation Person
- (void)myTestPrint:(NSString *)str {
NSLog(@"ifelseboyxx%@",str);
}
@end
// ViewController.m 中

- (id)forwardingTargetForSelector:(SEL)aSelector {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wundeclared-selector"
if (aSelector == @selector(myTestPrint:)) {
#pragma clang diagnostic pop
return [Person new];
}else{
return [super forwardingTargetForSelector:aSelector];
}
}

第三次

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector {}
- (void)forwardInvocation:(NSInvocation *)anInvocation {}
第一个要求返回一个方法签名,第二个方法转发具体的实现。二者相互依赖,只有返回了正确的方法签名,才会执行第二个方法。
这次的转发作用和第二次的比较类似,都是将 A 类的某个方法,转发到 B 类的实现中去。不同的是,第三次的转发相对于第二次更加灵活,forwardingTargetForSelector:只能固定的转发到一个对象;forwardInvocation:可以让我们转发到多个对象中去。
使用实例:
想转发到 Person 类以及Animal类中的-myTestPrint:方法中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
@interface Person : NSObject
@end

@implementation Person
- (void)myTestPrint:(NSString *)str {
NSLog(@"ifelseboyxx%@",str);
}
@end
@interface Animal : NSObject
@end

@implementation Animal
- (void)myTestPrint:(NSString *)str {
NSLog(@"tiger%@",str);
}
@end

// ViewController.m 中

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wundeclared-selector"
if (aSelector == @selector(myTestPrint:)) {
#pragma clang diagnostic pop
return [NSMethodSignature signatureWithObjCTypes:"v@:@"];
}
return [super methodSignatureForSelector:aSelector];
}

- (void)forwardInvocation:(NSInvocation *)anInvocation {
Person *person = [Person new];
Animal *animal = [Animal new];
if ([person respondsToSelector:anInvocation.selector]) {
[anInvocation invokeWithTarget:person];
}
if ([animal respondsToSelector:anInvocation.selector]) {
[anInvocation invokeWithTarget:animal];
}
}

⚠️ 如果到了第三次机会,还没找到对应的实现,就会 crash:
unrecognized selector sent to instance 0x7f9f817072b0

消息发送和消息转发的过程
3.png

Powered by Hexo and Hexo-theme-hiker

Copyright © 2013 - 2019 Acan's blog All Rights Reserved.

访客数 : | 访问量 :